The role of Risk Management in EN IEC 62304 by Robert Ginsberg, QAdvis
robert.ginsberg@QAdvis.com
www.QAdvis.com
Webinar 28 August 2013

Introduction of the speaker

Robert.Ginsberg@QAdvis.com

- 30+ years in SW Development
- 20+ years in Medical Device SW
- Co-author of IEC 62304, 80001-1, 80002-1 and 80002-2
- Working member of Cenelek TK-62

Key competence areas

Before we start ...

- There will be time for questions after the presentation
- You can use the chat function to contact the convener, Sebnem Hoffsten
- More complicated question, please call or email:
- +46 86210105
- robert.ginsberg@qadvis.com

The Big Picture for software in a Medical Device regarding MDD

IEC 62304 calls for RM activities through the whole development lifecycle

QA and SW engineers have to find efficient implementation of IEC 62304

It is challenging to find a proper level of effort for SW RM

Risk mgmt can enable effective, safe and compliant V\&V strategy

Use SW risk mgmt to regulate your efforts when testing the product

Governments and Agencies are enforcing new regulation across time

The Bar is Raised Over Time

Patient journal mix up caused death of a young woman

Case report: Socialstyrelsen 2007 "When Sofie came into ER, the treating doctor used the wrong patient journal. In the computerized journal system at the hospital there were two patients with similar names and social security numbers.
 Based on the contents of the wrong journal Sofie was treated with drugs that led to her death."

There is a new version of EN 14971 addressing acceptance criteria

SS-EN ISO 14971:2012 (E)
3. Risk reduction "as far as possible" versus "as low as reasonably practicable":
a) Annex D. 8 to ISO 14971, referred to in 3.4, contains the concept of reducing risks "as low as reasonably practicable" (ALARP concept). The ALARP concept contains an element of economic consideration.
b) However, the first indent of Section 2 of Annex I to Directive 93/42/EEC and various particular Essential Requirements require risks to be reduced "as far as possible" without there being room for economic considerations.
c) Accordingly, manufacturers and Notified Bodies may not apply the ALARP concept with regard to economic considerations.

Quality assurance techniques have a long history in the industry

There is a migration of QA techniques to the Medical Device area

Medical Device guidelines

FDA is expecting static analyzers to be implemented as part of the V\&V

There is a number of techniques available for Risk Management

HAZOP Methodology use guide words as a "creativity trigger" for hazards

HAZOP can be used for detecting usability related hazards

Study title: Patient Journal retrieval							Page:	of	
Drawing no.:			Rev no.:				Date:		
HAZOP team:							Meeting date:		
Part considered: Hospital information system									
Design intent:			Material: Activity: Source: Destination:						
No.	Guideword	Element	Deviation	Possible causes	Consequences	Safeguards	Comments	Actions required	Action allocated to
1	Other than	Patient Identification	Other patient than expected was selected	Similar social security number in picklist	Wrong treatment	Full social security no. has to be entered	Verification vs patient name still needed	Mandatory approval of correct patient name	RoGi

Fault Tree Analysis is a top down technique useful at early stages

Example of a Fault Tree Analysis for: Doctor cannot access patient records

FMECA is a bottom up technique to find failure modes of components/items

- Bottom up

- Risk ranking (probability * severity)
- Can become very detailed and cumbersome
- From the beginning oriented to HW
- Can be introduced when Items are defined

Items and units are the building blocks of a software system

Each manufacturer needs to find his own mix of techniques for Risk Mgmt

62304 calls for life cycle approach to risk mgmt based on ISO 14971

Risk Control Measures are expected to be expressed as requirements

- Evaluation of new risks due to implementation of RCMs
- Re-evaluation of RM file when appropriate regarding changes in requirements
- Update of system requirements when appropriate

Defining a safe architecture is one of the major tasks in the SW RM process

Safe architecture

- Proper partitioning
- Testable
- Predictable behavior
- "Flight recorder"
- On lab
- In field

Assurance of RCMs can be done with a number of techniques

Verification activities are expected to be planned upfront and fully executed

Two views to consider Functional reqs - architecture

Risk driven Item/Unit verification is an explicit expectation in 62304

- To do more test for risk related units
- Some guidance on how to implement this

Risk driven requirement verification is an underlying expectation in 62304

- To do more test for risk related features
- Significant freedom on how to implement this

Example on how Risk Analysis activities can relate to key documents

Example of an IPO diagram for Preliminary Hazard Analysis

It is very difficult to find probability for a SW failure

Software fails systematically

Random failures

- lonizing radiation
- Wear out, fatigue

Probability of SW to fail is expected to be 100\%

The key message in 62304 is to do software engineering for safety

Risk based V\&V strategy can utilize the resources efficiently

Example of a risk based requirement test strategy

Req class	A	B	C
Verification			M
Scripted (Req Based)	M	M	M
Independent Review	O	M	M
Exploratory	O	O	

- $\mathrm{M}=$ Mandatory $\mathrm{O}=$ Optional
- Risk control measures included in reqs

Class A: No injury or damage to health is possible
Class B: Non-serious injury is possible
Class C: Death or SERIOUS INJURY is possible

Example of risk based Item/Unit test strategy

Verification	Unit	In Item A	In Item B
Rule check	M	M	M Item C
Basic unit test	O	M	M
Review	O	M	M
100% Code coverage	O	O	M
Independent review	O	O	M

- $\mathrm{M}=$ Mandatory
- $\mathrm{O}=$ Optional

Class A: No injury or damage to health is possible
Class B: Non-SERIous inJuRy is possible
Class C: Death or SERIous injury is possible

Software risk management can be time consuming and hard

Good software engineering is the key to successful risk management

A good starting point is to document what already is done

The MANUFACTURER shall document TRACEABILITY of software HAZARDS as appropriate:
a) from the hazardous situation to the SOFTWARE ITEM;
b) from the SOFTWARE ITEM to the specific software cause;
c) from the software cause to the RISK CONTROL measure; and
d) from the RISK CONTROL measure to the VERIFICATION of the RISK CONTROL measure.

Building a solid V\&V process can enable productivity

Synergus can contribute with consulting within:

- Auditing and reviews
- Mentoring
- Risk manager role
- SQA role (Software Quality Assurance)
- Process development and documentation
- Product documentation
- Implementation of supporting IT-tools

